

Uluslararası Mühendislik

Araştırma ve Geliştirme Dergisi

International Journal of

Engineering Research and

Development

UMAGD, (2024) 16(1), 20-29.

10.29137/umagd.1323701

Cilt/Volume:16 Sayı/Issue:01 Ocak/January 2024

 Araştırma Makalesi / Research Article .

*Responsible Author: murat.gungor@medeniyet.edu.tr

Mixed-Integer Second-Order Cone Programming Reformulations of a Fractional

0-1 Program for Task Assignment

İş Atama İçin Kesirli Bir 0-1 Programın Kısmi Tam Sayılı İkinci Mertebeden Koni

Programlama Biçimlendirmeleri

Murat Güngör 1

1 Industrial Engineering Department, Istanbul Medeniyet University, 34700 Istanbul, TURKEY

Başvuru/Received:08/07/2023 Kabul/Accepted: 08/11/2023 Çevrimiçi Basım/Published Online: 31/01/2024

Son Versiyon/Final Version: 31/01/2024

Abstract

Fractional 0-1 programming is a subfield of nonlinear integer optimization in which the objective is to optimize the sum of ratios of

affine functions subject to a set of linear constraints. It is well-known that fractional 0-1 programs can be formulated as mixed-

integer linear programs. Recently, several alternative mixed-integer second-order cone programming reformulations have been

proposed for fractional 0-1 programs. These reformulations, which can be solved directly by standard commercial solvers, have been

reported to be efficient for certain types of problems. In this paper, we consider a task assignment problem with respect to

preferences, where the goal is to maximize total weighted satisfaction while maintaining a fair distribution. The problem’s

mathematical model is naturally a fractional 0-1 program. We investigate three mixed-integer second-order cone programming

reformulations thereof, and we compare, by means of a computational study, the performance of these reformulations with a

benchmark mixed-integer linear programming formulation that was proposed and analyzed in the literature before. The latter, namely

the mixed-integer linear programming formulation, turns out to be significantly better for the problem in question.

Key Words

“fractional 0-1 programming, hyperbolic 0-1 programming, mixed-integer conic quadratic programming, task assignment,

preferences”

Öz

Kesirli 0-1 programlama, doğrusal olmayan tam sayılı en iyilemenin bir alt alanıdır. Amaç, afin fonksiyonlardan oluşan bir kesirler

toplamının doğrusal kısıtlar altında en iyilenmesidir. Kesirli 0-1 programların kısmi tam sayılı doğrusal programlar olarak

biçimlendirilebildiği iyi bilinmektedir. Yakın zamanda, kesirli 0-1 programlar için çeşitli alternatif kısmi tam sayılı ikinci

mertebeden koni programlama biçimlendirmeleri önerilmiştir. Bu biçimlendirmeler, standart ticari çözücülerle doğrudan

çözülebilmektedir ve bunların bazı problem tipleri için verimlilikleri bildirilmiştir. Bu makalede, amacın adil bir yük dağıtımı altında

toplam ağırlıklı memnuniyeti en büyütmek olduğu, tercihleri dikkate alan bir iş atama problemi ele alınmaktadır. Problemin

matematik modeli doğal olarak kesirli bir 0-1 programdır. Bu programın üç kısmi tam sayılı ikinci mertebeden koni programlama

biçimlendirmesi incelenmiş ve bunlar, bilgisayar deneyleri yardımıyla, daha önce literatürde önerilen ve incelenen denek taşı bir

kısmi tam sayılı doğrusal programlama biçimlendirmesi ile kıyaslanmıştır. Kısmi tam sayılı doğrusal programlama

biçimlendirmesinin söz konusu iş atama problemi için kayda değer derecede daha iyi sonuçlar verdiği görülmüştür.

Anahtar Kelimeler

“kesirli 0-1 programlama, hiperbolik 0-1 programlama, kısmi tam sayılı konik karesel programlama, kısmi tam sayılı ikinci

mertebeden koni programlama, iş atama, tercihler”

https://dx.doi.org/10.29137/umagd.1323701
mailto:murat.gungor@medeniyet.edu.tr
https://dx.doi.org/10.29137/umagd.1323701
https://orcid.org/0000-0002-7202-6619

UMAGD, (2024) 16(1), 20-29, Güngör

21

1. Introduction

Second-order cone programming (SOCP) is a subfield of nonlinear convex optimization in which a linear function is minimized over

the intersection of an affine set and the product of second-order (quadratic) cones (Alizadeh and Goldfarb, 2003; Lobo et al., 1998;

Boyd and Vandenberghe, 2004). SOCP, also known as conic quadratic programming, includes linear and convex quadratic

programming as special cases, but is less general than semidefinite programming (Lobo et al., 1998). Like the problems in these classes,

SOCPs can be solved in polynomial time by interior point methods (Alizadeh and Goldfarb, 2003). (We use the acronym SOCP for

second-order cone programming as well as second-order cone program—the meaning shall be clear from context. Similarly, for other

such acronyms.) Mixed-integer second-order cone programming (MISOCP) is an extension of SOCP, where some of the decision

variables are bound to take on integer values (Benson and Sağlam, 2014).

Fractional 0-1 programming (FP) problems are nonlinear integer optimization problems in which the goal is to minimize or maximize

the sum of ratios of affine functions subject to a set of linear constraints (Borrero et al., 2017). FP is also referred to as hyperbolic 0-1

programming. Borrero et al. (2017) overview the literature on FPs including their uses, NP-hardness, and solution techniques.

It is possible to express FPs as equivalent mixed-integer linear programs (MILPs) in several ways (Li, 1994; Wu, 1997; Tawarmalani

et al., 2002; Borrero et al., 2016). Recently, MISOCP reformulations are proposed for FPs. Şen et al. (2018) give such a reformulation

for a special FP, namely assortment optimization. Later, Mehmanchi et al. (2019) develop a number of MISOCP reformulations for

general FPs, and explore the relationship between equivalent MILP and MISOCP reformulations. They show that gluing the ideas

underlying these two reformulation types lets one to push the boundaries of the current state-of-the-art results and handle problems of

larger size.

Güngör (2019) gives a novel application of FP: a task assignment problem with respect to preferences, where the objective is to

maximize total weighed satisfaction while maintaining a fair distribution of loads. He shows that the problem is NP-complete, gives

three equivalent MILP formulations, and provides a brief discussion of some practical issues. Also he suggests an MILP-based

heuristic, and performs experiments on randomly generated instances.

In this paper, we reformulate the task assignment problem with respect to preferences as MISOCPs, and by means of a computational

study we compare the performance of these reformulations with a benchmark MILP formulation. Outline of the paper is as follows:

We recall the precise definition of the problem in Section 2, and the benchmark MILP formulation in Section 3. Next, we give three

equivalent MISOCP reformulations in Section 4. The computational study is provided in Section 5. Finally, we summarize our main

conclusions in Section 6.

2. Problem Definition

For the task assignment problem with respect to preferences, we use the same notation as in Güngör (2019): Let 𝐼, 𝐽 denote the number

of people and tasks, and 𝑖, 𝑗 the respective indices. For each pair (𝑖, 𝑗) there is a positive number 𝑎𝑖𝑗 that shows the preference of person

𝑖 over task 𝑗. The larger the 𝑎𝑖𝑗 the more preferred is the task 𝑗 for person 𝑖. Every task has a specific load 𝑏𝑗. A parameter 𝑑 represents

the maximum acceptable difference from the mean load 𝜇 = (1/𝐼) × ∑ 𝑏𝑗𝑗 per person. We assume 𝑑 < 𝜇. All data are nonnegative

integers. A weight may be associated with each person, but we will not do so for the sake of simplicity. Let 𝑥𝑖𝑗 be a 0-1 variable defined

as 1 if task 𝑗 is assigned to person 𝑖, and 0 otherwise. A list of indexes, parameters, and decision variables for the problem with short

explanations can be seen in Table 1.

Table 1. Indexes, parameters, and decision variables for the problem.

Symbol(s) Explanation

𝑖, 𝑗 indexes for people and tasks

𝐼, 𝐽 number of people and tasks

𝑎𝑖𝑗 preference of person 𝑖 over task 𝑗

𝑏𝑗 load of task 𝑗

𝑑 maximum acceptable difference from average load

𝑥𝑖𝑗 1 if task 𝑗 is assigned to person 𝑖, and 0 otherwise

Satisfaction of person 𝑖 is defined as the ratio ∑ 𝑎𝑖𝑗𝑏𝑗𝑥𝑖𝑗𝑗 / ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 . Let 𝑋 be the set of all 𝑥 = (𝑥𝑖𝑗) ∈ {0, 1}𝐼×𝐽 such that

• ∑ 𝑥𝑖𝑗𝑖 = 1 for all 𝑗, and

• 𝜇 − 𝑑 ≤ ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 ≤ 𝜇 + 𝑑 for all 𝑖.

Task assignment problem with respect to preferences can be stated as an FP:

UMAGD, (2024) 16(1), 20-29, Güngör

22

max
𝑥∈𝑋

∑
∑ 𝑎𝑖𝑗𝑏𝑗𝑥𝑖𝑗𝑗

∑ 𝑏𝑗𝑥𝑖𝑗𝑗
𝑖

. (1)

Denote the maximum possible preference level by 𝑎max. Then the problem can be equivalently stated with a minimization objective:

min
𝑥∈𝑋

∑
∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗𝑗

∑ 𝑏𝑗𝑥𝑖𝑗𝑗

.

𝑖

 (2)

Relationship between the optimal objective values 𝑧max
∗ and 𝑧min

∗ of (1) and (2), respectively, is given by

𝑧max
∗ + 𝑧min

∗ = 𝑎max𝐼.

3. Benchmark Mixed-Integer Linear Formulation

Let 𝑡𝑖 be defined by

𝑡𝑖 =
∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗𝑗

∑ 𝑏𝑗𝑥𝑖𝑗𝑗

 (3)

If 𝑎𝑚𝑖𝑛 denotes the minimum possible preference level, then 0 ≤ 𝑡𝑖 ≤ 𝑎max − 𝑎min for all 𝑖. Introduce new binary variables 𝑤𝑖𝑘 by the

equalities ∑ 𝑏𝑗𝑥𝑖𝑗 = ∑ 2𝑘−1𝑤𝑖𝑘
𝐾
𝑘=1

𝐽
𝑗=1 for each 𝑖, where 𝐾 is log2(1 + ∑ 𝑏𝑗)𝑗 rounded up to the nearest integer. The relation

∑ 2𝑘−1𝑤𝑖𝑘𝑡𝑖 = ∑ 𝑎𝑖𝑗𝑏𝑗𝑥𝑖𝑗𝑗𝑘 guarantees that (3) holds true, so it suffices to linearize the products 𝑤𝑖𝑘𝑡𝑖 in order to obtain a linear

program. In general, for 𝑥 ∈ {0,1} and 𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝑈 , the expression 𝑥𝑦 necessarily equals 𝑧 provided that the following four

inequalities are satisfied (Adams and Forrester, 2005; Glover, 1975):

𝑦𝐿𝑥 ≤ 𝑧 ≤ 𝑦𝑈𝑥, (4)

𝑦 + 𝑦𝑈(𝑥 − 1) ≤ 𝑧 ≤ 𝑦 + 𝑦𝐿(𝑥 − 1). (5)

Indeed, if 𝑥 = 0, then 𝑧 = 0 by virtue of (4), and (5) is redundant; if 𝑥 = 1, then 𝑧 = 𝑦 by virtue of (5), and (4) is redundant—in any

case, 𝑧 = 𝑥𝑦. (Note that 𝑦𝐿 need not be nonnegative. If it is negative, then 𝑦 as well as 𝑧 are free variables.) Therefore, letting 𝑡𝐿 = 0

and 𝑡𝑈 = 𝑎max − 𝑎min, the FP (2) can be written equivalently as an MILP, where the 𝑧𝑖𝑘 represent 𝑤𝑖𝑘𝑡𝑖:

min ∑ 𝑡𝑖𝑖 (6a)

s.t. ∑ 𝑥𝑖𝑗𝑖 = 1 for all 𝑗 (6b)

 𝜇 − 𝑑 ≤ ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 ≤ 𝜇 + 𝑑 for all 𝑖 (6c)

 ∑ 𝑏𝑗𝑥𝑖𝑗 = ∑ 2𝑘−1𝑤𝑖𝑘𝑘𝑗 for all 𝑖 (6d)

 ∑ 2𝑘−1𝑧𝑖𝑘 = ∑ 𝑎𝑖𝑗𝑏𝑗𝑥𝑖𝑗𝑗𝑘 for all 𝑖 (6e)

 𝑧𝑖𝑘 ≤ 𝑡𝑈𝑤𝑖𝑘 for all 𝑖, 𝑘 (6f)

 𝑧𝑖𝑘 ≤ 𝑡𝑖 + 𝑡𝐿(𝑤𝑖𝑘 − 1) for all 𝑖, 𝑘 (6g)

 𝑧𝑖𝑘 ≥ 𝑡𝐿𝑤𝑖𝑘 for all 𝑖, 𝑘 (6h)

 𝑧𝑖𝑘 ≥ 𝑡𝑖 + 𝑡𝑈(𝑤𝑖𝑘 − 1) for all 𝑖, 𝑘 (6i)

 𝑡𝐿 ≤ 𝑡𝑖 ≤ 𝑡𝑈 for all 𝑖 (6j)

 𝑥𝑖𝑗 , 𝑤𝑖𝑘 ∈ {0, 1}, 𝑡𝑖 , 𝑧𝑖𝑘 ≥ 0 for all 𝑖, 𝑗, 𝑘. (6k)

Constraint (6d) defines the 𝑤𝑖𝑘 . Inequalities (6f)-(6i) ensure that 𝑧𝑖𝑘 = 𝑤𝑖𝑘𝑡𝑖 for any feasible solution. Consequently, equality (6e)

together with (6d) imply that 𝑡𝑖 is given by (3). Formulation (6) can be regarded as the minimization version of the best of the three

MILP formulations investigated in Güngör (2019). Hence, it will be used as a benchmark for assessing the performance of the MISOCP

reformulations to be given below.

4. Mixed-Integer Second-Order Cone Programming Reformulations

In this section, we reformulate (2), namely the minimization version of the task assignment problem with respect to preferences, as

MISOCPs. It will be convenient to make the following definitions:

𝑟𝑖 = ∑ 𝑏𝑗𝑥𝑖𝑗 ,

𝑗

 𝑦𝑖 =
1

∑ 𝑏𝑗𝑥𝑖𝑗𝑗

=
1

𝑟𝑖

.

UMAGD, (2024) 16(1), 20-29, Güngör

23

Clearly, for 𝑥 ∈ 𝑋, we have 𝜇 − 𝑑 ≤ 𝑟𝑖 ≤ 𝜇 + 𝑑 and 1 (𝜇 + 𝑑)⁄ ≤ 𝑦𝑖 ≤ 1 (𝜇 − 𝑑⁄) for all 𝑖. We let 𝑦𝐿 = 1/(𝜇 + 𝑑) and 𝑦𝑈 = 1/(𝜇 −
𝑑) for brevity.

4.1. First Reformulation

Problem (2) can be written as

min ∑ 𝑡𝑖𝑖

s.t. 𝑡𝑖 ≥
∑ (𝑎max−𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗𝑗

∑ 𝑏𝑗𝑥𝑖𝑗𝑗
 for all 𝑖

 𝑥 ∈ 𝑋, 𝑡𝑖 ≥ 0 for all 𝑖.

The inequality above holds as equality at any optimal solution. Since the 𝑥𝑖𝑗 are binary, we have 𝑥𝑖𝑗
2 = 𝑥𝑖𝑗 so that

∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗𝑗 = ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗
2

𝑗 , and the above mathematical program can be cast as

min ∑ 𝑡𝑖𝑖

s.t. 𝑡𝑖𝑟𝑖 ≥ ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗
2

𝑗 for all 𝑖

 𝑟𝑖 = ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 for all 𝑖
 𝑥 ∈ 𝑋, 𝑟𝑖 , 𝑡𝑖 ≥ 0 for all 𝑖.

The nonlinear constraint 𝑡𝑖𝑟𝑖 ≥ ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗
2

𝑗 is a rotated cone constraint, which can be readily used with standard commercial

solvers for MISOCP. Thus, our first conic reformulation of (2) can be explicitly stated as follows—we call it MISOCP1:

min ∑ 𝑡𝑖𝑖 (7a)

s.t. 𝑡𝑖𝑟𝑖 ≥ ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗
2

𝑗 for all 𝑖 (7b)

 𝑟𝑖 = ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 for all 𝑖 (7c)

 ∑ 𝑥𝑖𝑗𝑖 = 1 for all 𝑗 (7d)

 𝜇 − 𝑑 ≤ 𝑟𝑖 ≤ 𝜇 + 𝑑 for all 𝑖 (7e)

 𝑥𝑖𝑗 ∈ {0, 1}, 𝑟𝑖 , 𝑡𝑖 ≥ 0 for all 𝑖, 𝑗. (7f)

The above MISOCP was originally proposed by Atamtürk and Gomez (2020). We refer to it as the compact reformulation.

4.2. Second Reformulation

Next, we rewrite (2) as

min ∑ 𝑡𝑖𝑖

s.t. 𝑡𝑖 = ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗𝑗 𝑦𝑖 for all 𝑖

 ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 𝑦𝑖 = 1 for all 𝑖
 𝑥 ∈ 𝑋, 𝑡𝑖 , 𝑦𝑖 ≥ 0 for all 𝑖.

As in Section 3, the above mathematical program can be linearized as follows, where the 𝑧𝑖𝑗 represent 𝑥𝑖𝑗𝑦𝑖 :

min ∑ 𝑡𝑖𝑖

s.t. 𝑡𝑖 = ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑧𝑖𝑗𝑗 for all 𝑖

 ∑ 𝑏𝑗𝑧𝑖𝑗𝑗 = 1 for all 𝑖

 𝑧𝑖𝑗 ≤ 𝑦𝑈𝑥𝑖𝑗 for all 𝑖, 𝑗

 𝑧𝑖𝑗 ≤ 𝑦𝑖 + 𝑦𝐿(𝑥𝑖𝑗 − 1) for all 𝑖, 𝑗

 𝑧𝑖𝑗 ≥ 𝑦𝐿𝑥𝑖𝑗 for all 𝑖, 𝑗

 𝑧𝑖𝑗 ≥ 𝑦𝑖 + 𝑦𝑈(𝑥𝑖𝑗 − 1) for all 𝑖, 𝑗

 𝑥 ∈ 𝑋, 𝑡𝑖 , 𝑦𝑖 , 𝑧𝑖𝑗 ≥ 0 for all 𝑖, 𝑗.

For 𝑥𝑖𝑗 ∈ {0, 1}, we have 𝑧𝑖𝑗𝑟𝑖 = 𝑧𝑖𝑗 𝑦𝑖⁄ = 𝑥𝑖𝑗 = 𝑥𝑖𝑗
2 , so the rotated cone constraint 𝑧𝑖𝑗𝑟𝑖 ≥ 𝑥𝑖𝑗

2 is valid for the above formulation, and

can be used to strengthen it. Adding also the second-order cone representable inequality 𝑦𝑖𝑟𝑖 ≥ 1, we obtain another conic formulation

of (2)—we call it MISOCP2:

UMAGD, (2024) 16(1), 20-29, Güngör

24

min ∑ 𝑡𝑖𝑖 (8a)

s.t. 𝑡𝑖 = ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑧𝑖𝑗𝑗 for all 𝑖 (8b)

 ∑ 𝑏𝑗𝑧𝑖𝑗𝑗 = 1 for all 𝑖 (8c)

 𝑧𝑖𝑗 ≤ 𝑦𝑈𝑥𝑖𝑗 for all 𝑖, 𝑗 (8d)

 𝑧𝑖𝑗 ≤ 𝑦𝑖 + 𝑦𝐿(𝑥𝑖𝑗 − 1) for all 𝑖, 𝑗 (8e)

 𝑧𝑖𝑗 ≥ 𝑦𝐿𝑥𝑖𝑗 for all 𝑖, 𝑗 (8f)

 𝑧𝑖𝑗 ≥ 𝑦𝑖 + 𝑦𝑈(𝑥𝑖𝑗 − 1) for all 𝑖, 𝑗 (8g)

 𝑟𝑖 = ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 for all 𝑖 (8h)

 𝑧𝑖𝑗𝑟𝑖 ≥ 𝑥𝑖𝑗
2 for all 𝑖, 𝑗 (8i)

 𝑦𝑖𝑟𝑖 ≥ 1 for all 𝑖 (8j)

 ∑ 𝑥𝑖𝑗𝑖 = 1 for all 𝑗 (8k)

 𝜇 − 𝑑 ≤ 𝑟𝑖 ≤ 𝜇 + 𝑑 for all 𝑖 (8l)

 𝑥𝑖𝑗 ∈ {0, 1}, 𝑟𝑖 , 𝑡𝑖 , 𝑦𝑖 , 𝑧𝑖𝑗 ≥ 0 for all 𝑖, 𝑗. (8m)

The above MISOCP was originally proposed by Şen et al. (2018) in the context of assortment optimization. We refer to it as the

extended reformulation.

We shall prove that MISOCP2 has a stronger relaxation than MISOCP1. In other words, when the constraints 𝑥𝑖𝑗 ∈ {0, 1} are replaced

by 0 ≤ 𝑥𝑖𝑗 ≤ 1 in the two formulations, the optimal objective value of the SOCP resulting from (8) is greater than or equal to that of

(7). The proof is adapted from Mehmanchi et al. (2019). We start with MISOCP1: Constraint (7b) can be written as

𝑡𝑖 ≥ ∑(𝑎max − 𝑎𝑖𝑗)𝑏𝑗

𝑗

𝑥𝑖𝑗
2

𝑟𝑖

.

Substituting 𝑥𝑖𝑗
2 /𝑟𝑖 with a new variable 𝑧𝑖𝑗̅̅ ̅ and adding the inequality 𝑧𝑖𝑗̅̅ ̅ ≥ 𝑥𝑖𝑗

2 /𝑟𝑖 , we obtain a mathematical program equivalent to

MISOCP1:

min ∑ 𝑡𝑖𝑖

s.t. 𝑡𝑖 ≥ ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑧𝑖𝑗̅̅ ̅ 𝑗 for all 𝑖

 𝑧𝑖𝑗̅̅ ̅𝑟𝑖 ≥ 𝑥𝑖𝑗
2 for all 𝑖, 𝑗

 𝑟𝑖 = ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 for all 𝑖

 ∑ 𝑥𝑖𝑗𝑖 = 1 for all 𝑗

 𝜇 − 𝑑 ≤ 𝑟𝑖 ≤ 𝜇 + 𝑑 for all 𝑖
 𝑥𝑖𝑗 ∈ {0, 1}, 𝑟𝑖 , 𝑡𝑖 ≥ 0 for all 𝑖, 𝑗.

The first inequality must hold as an equality at any optimal solution, so the greater-than-or-equal-to sign there can be replaced by an

equality sign. Then the formulation MISOCP2 has all the constraints above together with some additional ones. It follows that the

relaxation of MISOCP2 is tighter than that of MISOCP1.

4.3. Third Reformulation

Finally, we consider an enhancement of MISOCP2 based on binary expansions as in Section 3. Let 𝑤𝑖𝑘 be defined by the equalities

∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗 = ∑ 2𝑘−1𝑤𝑖𝑘
𝐾𝑖
𝑘=1

𝐽
𝑗=1 for each 𝑖, where 𝐾𝑖 is log2(1 + ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗)𝑗 rounded up to the nearest integer (note

that 𝑤𝑖𝑘 was defined differently in Section 3). Then (2) can be written as

min ∑ 𝑡𝑖𝑖

s.t. 𝑡𝑖 ≥ ∑ 2𝑘−1𝑤𝑖𝑘𝑦𝑖
𝐾𝑖
𝑘=1 for all 𝑖

 ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗 =𝑗 ∑ 2𝑘−1𝑤𝑖𝑘
𝐾𝑖
𝑘=1 for all 𝑖

 𝑟𝑖 = ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 for all 𝑖
 𝑦𝑖𝑟𝑖 ≥ 1 for all 𝑖
 𝑥 ∈ 𝑋, 𝑤𝑖𝑘 ∈ {0, 1}, 𝑟𝑖 , 𝑡𝑖 , 𝑦𝑖 ≥ 0 for all 𝑖, 𝑘.

Introducing new variables 𝑧𝑖𝑘 = 𝑤𝑖𝑘𝑦𝑖 , and using the fact that 𝑤𝑖𝑘
2 = 𝑤𝑖𝑘 for 𝑤𝑖𝑘 ∈ {0, 1}, we obtain the convexification (note that 𝑧𝑖𝑘

was defined differently in Section 3)

UMAGD, (2024) 16(1), 20-29, Güngör

25

min ∑ 𝑡𝑖𝑖

s.t. 𝑡𝑖 ≥ ∑ 2𝑘−1𝑧𝑖𝑘
𝐾𝑖
𝑘=1 for all 𝑖

 ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗 =𝑗 ∑ 2𝑘−1𝑤𝑖𝑘
𝐾𝑖
𝑘=1 for all 𝑖

 𝑧𝑖𝑘𝑟𝑖 ≥ 𝑤𝑖𝑘
2 for all 𝑖, 𝑘

 𝑟𝑖 = ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 for all 𝑖
 𝑦𝑖𝑟𝑖 ≥ 1 for all 𝑖
 𝑥 ∈ 𝑋, 𝑤𝑖𝑘 ∈ {0, 1}, 𝑟𝑖 , 𝑡𝑖 , 𝑦𝑖 , 𝑧𝑖𝑘 ≥ 0 for all 𝑖, 𝑘.

The above formulation can be strengthened by including the linearization constraints 𝑧𝑖𝑘 ≤ 𝑦𝐿𝑤𝑖𝑘 and 𝑧𝑖𝑘 ≥ 𝑦𝑖 + 𝑦𝑈(𝑤𝑖𝑘 − 1). The

resulting MISOCP is our third formulation—we call it MISOCP3:

min ∑ 𝑡𝑖𝑖 (9a)

s.t. 𝑡𝑖 ≥ ∑ 2𝑘−1𝑧𝑖𝑘
𝐾𝑖
𝑘=1 for all 𝑖 (9b)

 ∑ (𝑎max − 𝑎𝑖𝑗)𝑏𝑗𝑥𝑖𝑗 =𝑗 ∑ 2𝑘−1𝑤𝑖𝑘
𝐾𝑖
𝑘=1 for all 𝑖 (9c)

 𝑧𝑖𝑘𝑟𝑖 ≥ 𝑤𝑖𝑘
2 for all 𝑖, 𝑘 (9d)

 𝑟𝑖 = ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 for all 𝑖 (9e)

 𝑦𝑖𝑟𝑖 ≥ 1 for all 𝑖 (9f)

 𝑧𝑖𝑘 ≤ 𝑦𝐿𝑤𝑖𝑘 for all 𝑖, 𝑘 (9g)

 𝑧𝑖𝑘 ≥ 𝑦𝑖 + 𝑦𝑈(𝑤𝑖𝑘 − 1) for all 𝑖, 𝑘 (9h)

 ∑ 𝑥𝑖𝑗𝑖 = 1 for all 𝑗 (9i)

 𝜇 − 𝑑 ≤ 𝑟𝑖 ≤ 𝜇 + 𝑑 for all 𝑖 (9j)

 𝑥𝑖𝑗 , 𝑤𝑖𝑘 ∈ {0, 1}, 𝑟𝑖 , 𝑡𝑖 , 𝑦𝑖 , 𝑧𝑖𝑘 ≥ 0 for all 𝑖, 𝑗, 𝑘. (9k)

Mehmanchi et al. (2019) were the first to propose the above formulation. We note that MISOCP3 has a reduced number of rotated cone

constraints, but an increased number of binary variables when compared to MISOCP2.

5. Computational Study

Task loads 𝑏𝑗 are created as random integers between 𝑏min = 1 and 𝑏max = 10. We analyze ten parameter combinations resulting from

taking 𝐼 ∈ {5, 15, 30, 50, 75} and 𝐽 𝐼⁄ ∈ {3, 5}, and we let 𝑑 ∈ {1, 2}. We suppose that there are coefficients 𝑤𝑗 of attractiveness, and

everybody selects 𝑚 tasks with respect to the discrete probability distribution defined by these coefficients. Random integers between

𝑎min + 1 and 𝑎max are appointed as preference levels for the selected tasks. If needed, we multiply these numbers by an appropriate

factor and then perform a rounding so that their maximum is precisely 𝑎max. To all the remaining tasks, we take 𝑎min as preference

level. Let 𝑤𝑗 = 𝑗2, 𝑎min = 1, 𝑎max = 10, and let 𝑚 be 𝐽/10 rounded up to the nearest integer. This is the same instance generation

procedure used in Güngör (2019).

We executed the mathematical programming formulations with C# using CPLEX 12.7 as solver, on a PC with Intel(R) Core(TM) i5-

2450M CPU (2.50GHz) processor and 4 GB RAM, running a 64-bit Windows 7 operating system. For all the parameter combinations

for (I,J), namely (5, 15), (5, 25), (15, 45), (15, 75), (30, 90), (30, 150), (50, 150), (50, 250), (75, 225), (75, 375), we randomly created

five instances as explained in the previous paragraph, and ran the benchmark MILP formulation (6) and the three MISOCP formulations

(7)-(9) in Section 4 for both 𝑑 = 1 and 𝑑 = 2. We set a time limit of 600 seconds. The results are given in Tables 2-5. Also, we solved

the relaxed versions of these four formulations. The results are given in Tables 6 and 7.

The Feasible and Optimal columns in Tables 2-5 show respectively the number of instances for which the solver was able to find a

feasible and an optimal solution. Let 𝑥 be the best feasible solution and 𝑏 the best bound found by the solver within the time limit.

Thus, 𝑏 is the least upper bound for a maximization objective, and the greatest lower bound for a minimization objective. (Note that

the benchmark MILP formulation as well as all the three MISOCP reformulations have minimization as objective.) Let 𝑧(𝑥) denote

the relevant objective function evaluated at 𝑥. The column Gap shows the average percent ratios |𝑧(𝑥) − 𝑏|/𝑧(𝑥). A dash shows that

this ratio cannot be calculated for some cases because no feasible solution was found. Finally, the column Time shows the mean CPU

time in seconds.

UMAGD, (2024) 16(1), 20-29, Güngör

26

The second column in Table 6 shows the number of instances for which the benchmark MILP formulation (6) has found the optimum

within the time limit. For such instances, we computed the ratio |𝑧∗ − 𝑧𝑟| 𝑧∗⁄ , where 𝑧∗ and 𝑧𝑟 denote the optimal objective values of

the original and the relaxed problems, respectively. The last four columns in the table show the average of these ratios for given

Table 2. Solution quality and performance of the benchmark MILP formulation (6).

 𝑑 = 1 𝑑 = 2

𝐼 𝐽 Feasible Optimal Gap (%) Time (s) Feasible Optimal Gap (%) Time (s)

5 15 5 5 0.00 0.3 5 5 0.00 0.4

 25 5 5 0.00 0.7 5 5 0.00 0.8

15 45 5 5 0.00 4.1 5 5 0.01 77.7

 75 5 5 0.01 4.3 5 5 0.01 36.9

30 90 5 5 0.01 36.1 5 1 2.96 485

 150 5 5 0.00 71.3 5 4 0.09 358

50 150 5 3 0.77 293 5 0 20.0 600

 250 5 1 2.33 522 5 0 3.42 600

75 225 5 2 4.34 465 5 0 42.5 600

 375 4 0 - 600 5 0 48.7 600

Table 3. Solution quality and performance of the first reformulation MISOCP1 (7).

 𝑑 = 1 𝑑 = 2

𝐼 𝐽 Feasible Optimal Gap (%) Time (s) Feasible Optimal Gap (%) Time (s)

5 15 5 5 0.00 4.2 5 5 0.01 8.4

 25 5 0 7.51 600 5 0 7.09 600

15 45 5 0 90.0 600 5 0 89.2 600

 75 5 0 92.1 600 5 0 91.3 600

30 90 0 0 - 600 4 0 - 600

 150 0 0 - 600 5 0 96.7 600

50 150 2 0 - 600 4 0 - 600

 250 0 0 - 600 2 0 - 600

75 225 0 0 - 600 0 0 - 600

 375 0 0 - 600 0 0 - 600

Table 4. Solution quality and performance of the second reformulation MISOCP2 (8).

 𝑑 = 1 𝑑 = 2

𝐼 𝐽 Feasible Optimal Gap (%) Time (s) Feasible Optimal Gap (%) Time (s)

5 15 5 5 0.00 0.2 5 5 0.00 0.3

 25 5 5 0.01 176 5 0 0.01 189

15 45 5 1 0.61 493 5 0 1.99 600

 75 5 0 0.97 600 5 0 1.73 600

30 90 5 0 2.61 600 5 0 5.28 600

 150 4 0 - 600 5 0 3.01 600

50 150 2 0 - 600 5 0 7.86 600

 250 0 0 - 600 3 0 - 600

75 225 0 0 - 600 1 0 - 600

 375 0 0 - 600 0 0 - 600

Table 5. Solution quality and performance of the third reformulation MISOCP3 (9).

 𝑑 = 1 𝑑 = 2

𝐼 𝐽 Feasible Optimal Gap (%) Time (s) Feasible Optimal Gap (%) Time (s)

5 15 5 5 0.00 0.3 5 5 0.00 0.4

 25 5 5 0.01 0.4 5 5 0.00 0.3

15 45 5 5 0.01 77.9 5 2 2.45 478

 75 5 3 0.51 488 5 2 1.25 444

30 90 3 0 - 600 5 0 16.7 600

 150 1 0 - 600 5 0 17.1 600

50 150 1 0 - 600 4 0 - 600

 250 0 0 - 600 4 0 - 600

75 225 0 0 - 600 3 0 - 600

 375 0 0 - 600 2 0 - 600

UMAGD, (2024) 16(1), 20-29, Güngör

27

formulations. None of the five instances were solved to optimality for some parameter combinations such as (𝐼, 𝐽, 𝑑) = (50, 150, 2);
this is indicated by a dash. Table 7 shows the average solution times in seconds for relaxations.

Table 6. Average gaps for the relaxations of the benchmark MILP formulation (6) and the three MISOCP reformulations (7)-(9) with respect to
the optimal objective value.

 Average gap for relaxation (%)

(𝐼, 𝐽, 𝑑)
Number of instances

used
MILP MISOCP1 MISOCP2 MISOCP3

(5, 15, 1) 5 71.3 78.7 2.5 4.8
(5, 15, 2) 5 70.6 78.3 3.7 7.5
(5, 25, 1) 5 69.4 77.7 1.1 3.4
(5, 25, 2) 5 69.0 77.5 1.5 5.8

(15, 45, 1) 5 88.6 91.4 3.9 5.5
(15, 45, 2) 5 88.2 91.2 5.1 7.7
(15, 75, 1) 5 89.1 91.1 1.6 3.0
(15, 75, 2) 5 88.9 91.0 2.3 5.0
(30, 90, 1) 5 93.9 95.1 6.8 8.4
(30, 90, 2) 1 93.3 95.0 6.4 9.4

(30, 150, 1) 5 94.6 94.9 2.5 3.5
(30, 150, 2) 4 94.4 94.9 2.8 4.6
(50, 150, 1) 3 96.8 96.7 7.0 8.2
(50, 150, 2) 0 - - - -
(50, 250, 1) 1 97.2 96.5 2.4 2.9
(50, 250, 2) 0 - - - -
(75, 225, 1) 2 98.4 97.6 7.0 7.8
(75, 225, 2) 0 - - - -
(75, 375, 1) 0 - - - -
(75, 375, 2) 0 - - - -

Average - 86.9 89.8 3.8 5.8

Table 7. Average solution times in seconds for the relaxations of the benchmark MILP formulation (6) and the three MISOCP reformulations
(7)-(9).

 Average solution time for relaxation (s)

(𝐼, 𝐽, 𝑑) MILP MISOCP1 MISOCP2 MISOCP3

(5, 15, 1) 0.0 0.0 0.0 0.0
(5, 15, 2) 0.0 0.0 0.0 0.0
(5, 25, 1) 0.0 0.0 0.1 0.0
(5, 25, 2) 0.0 0.0 0.1 0.0

(15, 45, 1) 0.0 0.1 0.4 0.1
(15, 45, 2) 0.0 0.1 0.4 0.1
(15, 75, 1) 0.0 0.1 0.7 0.1
(15, 75, 2) 0.0 0.1 0.7 0.1
(30, 90, 1) 0.1 0.4 2.8 0.3
(30, 90, 2) 0.1 0.4 2.8 0.3

(30, 150, 1) 0.1 0.7 4.5 0.4
(30, 150, 2) 0.1 0.7 4.5 0.4
(50, 150, 1) 0.2 2.1 11.0 0.8
(50, 150, 2) 0.2 2.0 11.4 0.8
(50, 250, 1) 0.3 4.8 17.9 1.3
(50, 250, 2) 0.3 4.4 18.7 1.2
(75, 225, 1) 0.6 9.4 32.8 1.7
(75, 225, 2) 0.6 9.8 34.1 1.7
(75, 375, 1) 1.0 20.2 55.0 3.4
(75, 375, 2) 0.9 19.6 56.6 3.5

UMAGD, (2024) 16(1), 20-29, Güngör

28

According to Tables 3-5, the reformulation MISOCP1 shows definitely the worst performance among the conic formulations. Indeed,

MISOCP1 manages to find optimal solutions only for the easiest parameter combination (I,J)=(5,15). The overall average gap for 𝐼 =
15 is about 90%, while it is less than 1.5% for both MISOCP2 and MISOCP3. In view of Tables 4 and 5, MISOCP3 shows a somewhat

better performance on small instances (𝐼 ≤ 15), whereas MISOCP2 seems more promising on large ones 𝐼 ≤ 30). Particularly, for 𝐼 =
15, MISOCP3 has a smaller average gap in three of the four, and a smaller average time for all of the four parameter combinations. On

the other hand, MISOCP2 yields notably better gaps for 𝐼 = 30. Also, it is more successful at finding feasible solutions when 30 ≤
𝐼 ≤ 50; however, for 𝐼 = 75, MISOCP3 has found four more feasible solutions than MISOCP2 in total.

We had proved in Section 4.2 that MISOCP2 has a stronger relaxation than MISOCP1. Indeed, according to Table 6, overall average

gap for the relaxation of the former is 3.8% while that of the latter is 89.8%. Moreover, in line with Mehmanchi et al. (2019), the same

table shows that empirically the relaxation of MISOCP2 is also stronger than that of MISOCP3. In fact, not only on average, but in all

instances we generated in our experiments, this happened to be the case.

Large gaps associated with MISOCP1 provides a partial explanation of the poor performance of this reformulation. For MISOCP3, in

comparison with MISOCP2, the reduction in the number of rotated cone constraints is reflected in smaller average solution times for

relaxations (Table 7), which generally compensates for the increase in the number of binary variables. Nevertheless, as Table 2

demonstrates, the benchmark MILP formulation (6) surpasses all three MISOCP reformulations. Although its relaxations have a large

average gap like MISOCP1, they are solved very fast compared to even the best conic reformulation. This implies that nodes in a

branch-and-bound tree for (6) are processed much more quickly, resulting in better overall performance.

We conclude this section with a comparison of formulation (6) with the best MILP formulation denoted TAPL3 in Güngör [12]. As

we have noted in Section 3, formulation (6) can be regarded as the minimization version of TAPL3. Consequently, it is not surprising

that the solution quality and performance of (6) demonstrated by Table 2 is generally similar to that of TAPL3. However, there are

considerable differences at some specific instances. For example, regarding the combination (𝐼, 𝐽, 𝑑) = (75, 225, 1), the average gap

for (6) is 4.34%, while it is 76.7% for TAPL3. This stems from actually one instance out of five, for which the gap is 19% for (6) and

373% for TAPL3 at the end of ten-minute time limit. On the other hand, concerning the triple (𝐼, 𝐽, 𝑑) = (75, 375, 2), the average gap

is 48.7% for (6) and 3.97% for TAPL3. In this case, two instances end up with a gap larger than 90% for (6). These examples suggest

that a seemingly trivial change of the objective sense—from maximization to minimization—may result in significant differences on

the solution performance of some instances.

6. Conclusion

In this paper, we investigated three second-order cone programming reformulations of a fractional 0-1 program for task assignment

that was formulated and solved in the literature before by mixed-integer linear programming. We carried out a computational study on

randomly generated instances. The compact conic formulation performed the worst, whereas the extended formulation and its

enhancement based on binary expansions yielded better and similar results. Nevertheless, the benchmark mixed-integer linear

formulation gives the best performance for task assignment with respect to preferences.

References

Adams, W. P., & Forrester, R. J. (2005). A simple recipe for concise mixed 0-1 linearizations. Operations Research Letters, 33, 55–

61. doi:10.1016/j.orl.2004.05.001

Alizadeh, F., & Goldfarb, D. (2003). Second-order cone programming. Mathematical Programming, Series B, 95, 3–51.

doi:10.1007/s10107-002-0339-5

Atamtürk, A., & Gómez, A. (2020). Submodularity in conic quadratic mixed 0-1 optimization. Operations Research, 68, 609–630.

doi:10.1287/opre.2019.1888

Benson, H. Y., & Sağlam, Ü. (2014). Mixed-Integer Second-Order Cone Programming: A Survey. INFORMS Tutorials in

Operations Research, 13–36. doi:10.1287/educ.2013.0115

Borrero, J. S., Gillen, C., & Prokopyev, O. A. (2016). A simple technique to improve linearized reformulations of fractional

(hyperbolic) 0-1 programming problems. Operations Research Letters, 44, 479–486. doi:10.1016/j.orl.2016.03.015

Borrero, J. S., Gillen, C., & Prokopyev, O. A. (2017). Fractional 0-1 programming: applications and algorithms. Journal of Global

Optimization, 69, 255–282. doi:10.1007/s10898-016-0487-4

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization.

Chi, C.-Y., Li, W.-C., & Lin, C.-H. (2017). Convex Optimization Problems. doi:10.1201/9781315366920-5

UMAGD, (2024) 16(1), 20-29, Güngör

29

Glover, F. (1975). Improved Linear Integer Programming Formulations of Nonlinear Integer Problems. Management Science, 22,

455–460. doi:10.1287/mnsc.22.4.455

Güngör, M. (2019). A fractional 0-1 program for task assignment with respect to preferences. Computers and Industrial Engineering,

131, 263–268. doi:10.1016/j.cie.2019.03.048

Li, H. (1994). A global approach for general 0-1 fractional programming. European Journal of Operational Research, 73, 590–596.

doi:10.1016/0377-2217(94)90257-7

Lobo, M. S., Vandenberghe, L., Boyd, S., & Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and

Its Applications, 284, 193–228. doi:10.1016/S0024-3795(98)10032-0

Mehmanchi, E., Gómez, A., & Prokopyev, O. A. (2019). Fractional 0–1 programs: links between mixed-integer linear and conic

quadratic formulations. Journal of Global Optimization, 75, 273–339. doi:10.1007/s10898-019-00817-7

Şen, A., Atamtürk, A., & Kaminsky, P. (2018). A conic integer optimization approach to the constrained assortment problem under

the mixed multinomial logit model. Operations Research, 66, 994–1003. doi:10.1287/opre.2017.1703

Tawarmalani, M., Ahmed, S., & Nikolaos, V. (2002). Global Optimization of 0-1 Hyperbolic Programs. Journal of Global

Optimization, 24, 385–416. doi:10.1023/A:1021279918708

Wu, T. (1997). A note on a global approach for general 0–1 fractional programming. European Journal of Operational Research, 101,

220–223. doi:10.1016/S0377-2217(96)00258-5

